硕士研究生入学数学考试历年是考生们感到很棘手的问题,很多考生由于数学没考好而痛失深造的机会。尤其对于文科改考理工科或经济类学科的考生来说,数学这门课的难度可称为所有科目中最大的,也是最让人担心的。 自从1997年数学考试大纲进行了一次较大的调整以来,考生们普遍反映试题越来越难了。数学几乎成了相当部分考生难以逾越的“关口”。在这种情况下,部分考生“病急乱投医”,盲目参加各种辅导班,结果花费了大量的时间精力,效果却不好。
从1987年至2001年这十五年的数学录取线差不多总是统考的三门基础课( 数学、英语、政治)中最低的。为什么会出现这种情况呢?有专家分析:一是考研数学试题的题量和难度与现行高校期末考试的差距较大,很多考生反映即使在大学时代数学学得不错,但在考研中如果不认真对待,不好好复习一番,也难以取得好的成绩,甚至上不了及格线。二是现在的硕士研究生数学试卷相对其它课程来说,所考内容多,知识面宽,综合性强,技巧性较高。如果只掌握知识而不掌握解题方法和技巧是很难考出水平的。
相比以前,2002年的数学考试大纲做了部分调整,而且2003年数学也发生了变化,统考数学将归入专业一科目中,数学一、二、三、四也由各招生单位按照有利于选拔人才和适应培养要求的原则自选。这意味着数学考查的方向将是更加注重对考生在掌握好基础上的综合运用能力的考查。如何复习好数学,可以说是报考理工类和经济类考生整个考研复习的关键。复习得好,你可以将别人拉得很远;复习的不好,就会吃苦头,甚至因此而失去机会。
考研的数学内容包括三个部分:微积分、线性代数、概率论与数理统计;同时还分为四个类别,即数一、数二、数三和数四,报考不同的专业要求考核不同的类别,这四种类别虽然考查的难度和侧重点不同,但作为数学学科特点是一样的,复习的方法也大体一样,而且数学相对英语来说,只要方法得当,提高非常快。所以只要掌握了正确的复习方法,就能事半功倍。下面的备考经验也许能给考生以启发。
数学备考一定要有一个复习时间表,也就是要有一个周密可行的计划。按照计划,循序渐进,切忌搞突击,临时抱佛脚。
数学是一门基础性学科,其解题能力的提高,是一个长期积累的过程,因而复习时间就应适当提前,循序渐进。根据往年的考试经验,不少考生大致在三月开始着手进行复习,当然数学基础差的考生可以将复习的时间适当提前。复习一定要有一个可行的计划,通过计划保证复习的进度和效果。一般可以将复习分成四个阶段,每个阶段的起止时间和所要完成的任务考生应给予明确规定,以保证计划的可行性。
根据历年高分考生的经验,大体可分为以下几个阶段:第一个阶段是按照考试大纲划分复习范围,在熟悉大纲的基础上对考试必备的基础知识进行系统的复习,了解考研数学的基本内容、重点、难点和特点。这个时间段一般划定为六月前。第二个阶段是在第一阶段的基础上,做一定数量的题,重点解决解题思路的问题。一般从七月到十月。这个阶段要注意归纳总结,即拿到题后要知道从什么角度,可以分几步去求解,每道题并不要求都要写出完整步骤,只要思路有了,运算过程会做了,考生可以视情况而灵活掌握,这样省出时间来看更多的题。所选试题可以是历年真题,也可以是书上的练习题,但真题一定要做,而且要严格按照实考的要求去做,把握真题的特点和解题思路及运算步骤。第三个阶段是实战训练阶段,从十一月到十二月的中旬,这也是临考前非常重要的阶段。考生要对大纲所要求的知识点做最后的梳理,熟记公式,系统地做几套模拟试卷,进行实战训练,自测复习成果。在做模拟题前先要系统记忆掌握基本公式,做题要讲究质量,既要有速度,又要有严格的步骤、格式和计算的准确性。最后阶段是考前冲刺,从十二月下旬到考试。针对在做模拟试题过程中出现的问题作最后的补习,查缺补漏,以便以最佳的状态参加考试。
考生们应该明白,学好数学是一个长期的过程,来不得半点的投机取巧,所以考前突击,临时抱佛脚的做法是不足取的,只有按照自己的计划,踏踏实实的进行准备,才能以不变应万变,只要自己的综合能力提高了,不管考试如何变化,都能取得好的成绩。
吃透考试大纲要求,准确进行复习定位。
考研大纲是教育部颁发的,指导命题和考生复习的纲领性文件,是命题的根本性依据。它严格划定了各类专业考生应考的范围和难度要求,这也是考生制定计划的依据。首先要认真阅读考试大纲,并结合近三年来的考研试题,实际了解本专业类数学考题的题型、类别和难度特点,进行复习的准确定位。考生应切记,与考纲无关的内容坚决不看,以免浪费时间,得不偿失。其次,考生要对大纲进行逐条分析,潜心研究,把握大纲的所进行的调整和命题的变化。
大纲实际上就是教育部为考生所划定的复习范围,考生应参照大纲,全面复习,不留遗漏,这是复习的基本对策。通过复习比较系统地理解数学的基本概念和基本理论,掌握数学的基本方法。要想在研究生入学考试中取得好成绩,必须做到"知己知彼"。"知己"首先是了解自己的优势和弱势,从而在学习和复习中有的放矢。“知彼”就是要研究近几年命题的特点和趋势,从而找到解答的方法。这项工作就要靠研读大纲和历年试题来完成。比如新出现的知识点一般情况下是命题的重点,而且经济类数学考试的特点之一是新知识点连考2--3年,所以,在复习中应紧紧结合大纲及真题,做到"知己知彼"。
通过分析大纲,考生在复习时要突出重点,同时紧紧抓住考试热点。一般地说,大纲中要求理解的内容,要求掌握的方法就是考试的重点,而近几年的考试中重复出现的内容就是考试热点。在对概念、定理和公式进行系统复习的基础上再对重点、难点及热点部分作重点复习,但不要专门去做偏题、难题、怪题,正式考试基本上没有什么偏题和怪题。开始全面复习之前抓住重点章节及常考部分非常关键,因为全面复习并不等于把精力和时间平均地分摊在所有的知识点上,而是要在全面复习的基础上,抓住重点、难点、热点和主要考试点。多年经验表明:各科的重要常考考点一般占其考试大纲的60%--70%。抓重点难点考点可使复习针对性增强,加快复习进度并节省大量时间,提高考研竞争优势,为考场取得高分打下坚实的基础。
就各课的特点来说,高等数学是考研数学的重中之重,所占分值较大,需要复习的内容也比较多。另外高等数学还有跨章节乃至跨科目的综合考查题,近几年出现的有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的综合题;线性代数与空间解析几何的综合题等。这种类型的题目考生要联系其它数学课程的知识才能做好。线性代数的内容纵横交错,环环相扣,知识点之间相互渗透很深,因此不仅出题角度多,而且解题方法也是灵活多变,需要在夯实基础的前提下大量练习,揣摩思路。而且2002年的大纲中适当增加了数学二的线性代数的考试内容,加大了难度,同时还提高了线性代数在试卷二中的占分比例,从原来占总分的15%提高到现在的20%,考生在复习时就要加大这一部分的复习力度。 概率论与数理统计是考研数学中比较难的部分,近几年这部分试题得分率普遍较低。与微积分和线性代数不同的是,概率论与数理统计并不强调解题方法,也很少涉及解题技巧,而非常强调对基本概念、定理、公式的深入理解。
事实证明,最新的考题与往年的考试非常类似的占5 0分左右,这些考题大部分改变一种说法,但解题思路几乎一样。所以对考生来说,一是要注意年年被考到的内容,对往年考题要全部消化巩固;二是注意那些多年没考到而大纲要求的内容。这样,通过准确的定位,抓住复习的重点和热点,提高复习的效率和效果。
三.重视基础,重视和加深对基本概念、基本定理和基本方法的复习和理解,
考生要重视对基本概念、基本定理和基本方法的复习,打好基础。数学是一门演绎的科学,首先要对概念有深入理解(要做到用自己的语言叙述出来),若不然,做题时难免会所答非所问,甚至是南辕北辙。其次要把定理和公式牢牢记住,每一道题都是由基本的定义、定理和公式构成,它们的不同组合就形成了不同的问题,多层次的组合形成不同复杂程度的问题。所以这些定义、定理和公式是解题的基础,而熟练掌握和深刻理解这些内容就成为解题成功的关键. 可以说,掌握了定理和公式就等于找到了解题的突破口和切入点。对近几年数学答卷的分析表明,考生失分的一个重要原因就是对基本概念、定理记不全、记不牢,理解不准确,基本解题方法掌握不好
为了熟练掌握,牢固记忆和理解所有的定义,定理,公式,一定要先把所有的公式,定理,定义记牢,然后再做大量的练习基础题。做这些基础题时如能达到一看便知其过程,这样就说明真正掌握了基础习题的内容。这些题看起来简单,但它们能帮助我们熟悉和掌握定义、定理、公式,所以考生不能因为这些题简单而不去看它,不去重视它。打个比方,如果把整个习题看成一座大厦,则定理,定义,公式等就好比砖瓦,而基础习题就是由砖瓦垒起的一面墙,可见熟练掌握基础习题对考生来说有着重要的意义。另外,考生还要注意定理和公式成立的条件,应用范围及变形,在理解的基础上灵活运用。近几年综合性试题、实际应用性试题越来越多,考生要特别注意。
俗话说"拳不离手,曲不离口"才能达到精妙的境界,学数学也是如此,只有把基本功打扎实了,才有进一步提高解题能力的可能性。比如高等数学中的最主要的基本功是极限、导数和积分。线性代数中主要基本功是矩阵的初等变换、线性方程组的解法、矩阵特征值、特征向量的求法。概率中主要是事件概率的求法、二维随机变量的分布、随机变量的数学特征等。把这些最基本的掌握住了,才谈得上掌握解题方法和技巧,否则所谓技巧只能是无本之木、无源之水。谈到基础,一些考生也许会不以为然,认为这与实际考试难度相比相差甚远。这里有一个对试题难度的认识问题,只要对历年考题认真分析就可以看出,试题难就难在对大纲划定的基础知识的延伸较深,对基本概念、基本定理和基本方法的综合应用较多较灵活,并不存在多少技巧性很强的偏题、怪题,2002年的试题从深度上说试题仍然体现了以考察数学的基本概念、基本理论、基本方法为主。只要考生的基本概念、基本理论、基本方法掌握扎实,是不难回答的。一些中间偏难的题,最终也是从基本概念基础上延伸转换中求解的。只不过在对基本概念、基本理论、基本方法的理解和运用上,强调了多方位多角度。考生应该认识到虽然仅打好基本功还得不到高分,但这是取得好成绩的基础和前提。历年都有相当多的考生考后的估计分与实际成绩差距很大究其原因就是基本功不扎实,该得分的得不到分,直接影响到“上线”。
对于基础差的考生来说,更要注重基础,最好能把课本通看一遍,在看的过程中牢记一些重要的概念,公式和定理,并结合课后练习题理解、消化这些公式、定理,前面已经说过,定义、定理和公式是基础的基础,基础较差的考生要想提高自己的解题能力,就必须在这上面多下功夫。
基本训练要反复进行。学习数学,一定要做一定数量的题。提倡精练,即反复做一些典型的题,做到一题多样,一题多变,要训练自己的抽象思维能力。对一些基本定理的证明,基本公式的推导,以及一些基本练习题,要做到“熟能生巧”。通过基本训练巩固对基本概念、基本定理和基本方法的理解。
“眼高手低”是很多考生在复习数学时易犯的错误,很多考生对基础性的东西不屑一顾,认为这些内容很简单,用不着下劲复习,还有的考生只是“看”,认为看懂就行了,很少下笔去做题,结果在最后的考试中眼熟手生,难以取得好的成绩。所以,在复习数学时一定要脚踏实地,一步一个脚印,就像下象棋,要取敌方老帅,就要老老实实战败所有兵卒,稳扎稳打,步步为营,这样的话,才能以不变应万变,在最后的实考中占据主动!
基础的重要性已不言而喻,但是只注重基础,也是不行的。太注重基础,就会拘泥于书本,难以适应考研试题。打好基础的目的就是为了提高。但太重提高就会基础不牢,导致头重脚轻,力不从心。考生要明白基础与提高的辩证关系,根据自身情况合理安排复习进度,处理好打基础和提高能力两者的关系。一般来说,基础与提高是交插和分段进行的,在一个时期的某一个阶段以基础为主,基础扎实了,再行提高。然后又进入了另一个阶段,同样还要先扎实基础再提高水平,如此反复循环。考生在这个过程中容易遇到这样的问题,就是感觉自已经过基础复习或一段时间的提高后几乎不再有所进步,甚至感到越学越退步,碰到这种情况,考生千万不要气馁,要坚信自己的能力,只要复习方法没有问题,就应该坚持下去。虽然表面上感到没有进步,但实际水平其实已经在不知不觉中提高了,因为在这个时期考生已经认识到了自已的不足,正处于调整和进步中。这个时候需要的就是考生的意志力,考研本来就是一场意志力的比赛,不仅需要丰富的知识和较高的能力,更要有坚强的意志力。只要坚持下去,就有成功的希望。
四.加强综合解题能力的训练,熟悉常见考题的类型和解题思路,力求在解题思路上有所突破。
考研试题与教科书上的习题的不同点在于,前者是在对基本概念、基本定理、基本方法充分理解的基础上的综合应用,有较大的灵活性,往往一个命题覆盖多个内容,涉及到概念、直观背景、推理和计算等多种角度。因此一定要力争在解题思路上有所突破,要在打好基础的同时做大量的综合性练习题,并对试题多分析多归纳多总结,力求对常见考题类型、特点、思路有一个系统的把握。许多考生在做完教科书上的习题后,往往对考研题难以适应,其突出感觉是没有思路,这正是考生考前准备应解决的突破口。考生要掌握住各种题型的解题方法和技巧。考虑到数学学科的特点,要求考生自己将所有的解题思路都琢磨出来是十分困难的,这方面通常可以通过求教有经验的老师,参加有较好信誉的辅导班,或者阅读有关的辅导书解决。另外在做题时,不必每道题都要写出完整的解题步骤,类似的题一般只要看出思路,熟悉其运算过程就可以,这样可以节省时间,提高做题的效率。
在选择习题时,考生要注意,最好先不要做模拟题,应该把真题先做一遍。因为真题的错误率比较低,而且最接近实际的试题。有的模拟题出得刁钻古怪,没有可做性。如果先做模拟题,假如选的模拟题不好则白白浪费了时间,而且对自己的解题思路也有着负面影响。通过做真题,考生可以真切的体会到考研的重点,难点,重要的是掌握了各种常考的题型。在做完真题之后再做模拟题就会感觉自己的解题思路有了质的提高,对数学认识也有了新的变化。很多考生往年的经验都证明了这一点。
考生在做题的同时还要注意各章节之间的内在联系,数学考试会出现一些应用到多个知识点的综合性试题和应用型试题。这类试题一般比较灵活,难度也要大一些。 考生要注意对综合性的典型考题的分析,来提高自身解决综合性问题的能力。数学有其自身的规律,其表现的一个重要特征就是各知识点之间、各科目之间的联系非常密切,这种相互之间的联系给综合命题创造了条件,因而考生应进行综合性试题和应用题训练。通过这种训练,积累解题思路,同时将各个知识点有机的联系起来,将书本上的知识转化为自己的东西。
考生在备考时还要多做例题,而不仅仅是练习题。做例题时应遵照下面的方法,也就是在看第一遍之前一定要遮住答案,自己先认真做;无论做出与否都要把自己的思路详记于空白处,尤其是做不出的,一定把自己真实的思考方式记录在案,留待日后分析,而不是对了答案就万事大吉,这样做可以迅速的找到做题的感觉。总之,考生在做题目时,要养成良好的做题习惯,做一个"有心人",认真地将遇到的解答中好的或者陌生的解题思路以及自己的思考记录下来,平时翻看,久而久之,自己的解题能力就会有所提高。对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。数学试题千变万化,其知识结构却基本相同,题型也相对固定,往往存在明显的解题套路,熟练掌握后既能提高解题的针对性,又能提高解题速度和正确率。
当然,一味的靠做题来提高数学能力也是不足取的。曾有一个考生,平时的解题能力很高,但最后的考试成绩却不是很理想,谈到自己失利的原因时,他说,自己平时几乎全部靠做题来提高水平,而对知识点缺乏更高层次上的把握和运用,导致遇到陌生的题目时,得分率严重下降。所以考生不能为做题而做题,要在做题时巩固基础,提高自己对知识点更高层次上的把握和运用。要善于归纳总结,对数学习题最好能形成自己熟悉的解题体系,也就是对各种题型都能找到相应的解题思路,从而在最后的实考中面对陌生的试题时能把握主动。
考前的强化训练应注意的问题。
加强考前强化训练,做几套模拟试卷必不可少。在规定的时间内做几套模拟试卷一是可以了解一下自己对所考的知识点究竟掌握到什么程度,同时可以了解到自己的薄弱环节从而抓紧时间补上。再者通过平时的练兵可以给应试时提供点临场发挥的经验。有相当一部分考生的经验证明,如果考生能够通过做题将所遇到的各种题进行延伸或将试题的变式做到融汇贯通,一定会在考试中运用自如超常发挥,取得好成绩。根据往年的情况,许多考生往往看得多,练得少。有些考生在考后抱怨题太多,做不完或做错。其原因就是平时缺少练笔的机会以及考前没有进行强化训练。所以建议考生在限定时间里系统做几套模拟题或样题,然 后对照答案自己分析总结。在做模拟题时,应注意以下几点:
1.注意答卷时时间的分配。一定按照实考那样严格限定做题。时间只有平时养成良好的习惯,考试的时候才能做到心中有数,不至于张皇失措。
2.数学公式必须在做题前就牢记住,这样在使用时才会得心应手,
3.举一反三,不只是为做题而做题,注意知识点之间的联系。
下面再说一下考生在答题过程中应注意的事项,也就是一些做题经验。
考研数学的难度是越来越大,但根据往年的情况,一般会有50分左右的基本题。要想及格,这50来分一定要抓住。历年考题中计算题的前4-5题,差不多所有填空,选择题就属于这一类。因而考生在安排答题顺序时,应该先答填空题,因为这部分是最简单的概念和运算,得分比较容易,当然试题中如果有计算题或者证明题与平时看书或者参加辅导班老师所讲的例题类似的也可以先做。然后答证明计算题。答计算证明题时应先答与习题模拟题类似的,然后答没有见过的。最后答单项选择题,因其综合性太强不易做对,而且有些单项选择题概念性非常强,计算技巧也比较高,所以不易在做完填空后立即做,以免自信心受到打击。
求解单项选择题一般有以下几种方法:
推演法:它适用于题干中给出的条件是解析式子。
图示法:它适用于题干中给出的函数具有某种特性,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。
举反例排除法:排除了三个,第四个就是正确的答案,这种方法适用于题干中给出的函数是抽象函数的情况。
逆推法:所谓逆推法就是假定被选的四个答案中某一个正确,然后做逆推,如果得到的结果与题设条件或尽人皆知的正确结果矛盾,则否定这个备选答案。
赋值法:也就是说将备选的一个答案用具体的数字代入,如果与假设条件或众所周知的事实发生矛盾则予以否定。